Professional Competence Identification Through Formal Concept Analysis

Abstract

As the job market has become increasingly competitive, people who are looking for a job placement have needed help to increase their competence to achieve a job position. The competence is defined by the set of skills that is necessary to execute an organizational function. In this case, it would be helpful to identify the sets of skills which is necessary to reach job positions. Currently, the on-line professional social networks are attracting the interest from people all around the world, whose their goals are oriented to business relationships. Through the available amount of information in this kind of networks it is possible to apply techniques to identify the competencies that people have developed in their career. In this scenario it has been fundamental the adoption of computational methods to solve this problem. The formal concept analysis (FCA) has been a effective technique for data analysis area, because it allows to identify conceptual structures in data sets, through conceptual lattice and implications. A specific set of implications, know as proper implications, represent the set of conditions to reach a specific goal. So, in this work, we proposed a FCA-based approach to identify and analyze the professional competence through proper implications.

Keywords

Formal concept analysis Proper implications Professional competence On-line social networks 

Silva P.R., Dias S.M., Brandão W.C., Song M.A., Zárate L.E. (2018) Professional Competence Identification Through Formal Concept Analysis. In: Hammoudi S., Śmiałek M., Camp O., Filipe J. (eds) Enterprise Information Systems. ICEIS 2017. Lecture Notes in Business Information Processing, vol 321. Springer, Cham
https://doi.org/10.1007/978-3-319-93375-7_3
Advertisements

Disciplinas de Aprendizado de Máquina e Projeto Integrado em Big Data data

Acompanhe as disciplinas de Aprendizado de Máquina e Projeto Integrado em Big Data da Pós-graduação em Ciência de Dados e Big Data da PUC Minas no menu “teaching”.

Journal of Big Data

Aims and scope

The Journal of Big Data publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal examines the challenges facing big data today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems. Academic researchers and practitioners will find the Journal of Big Data to be a seminal source of innovative material.

Formal Concept Analysis Applied to Professional Social Networks Analysis

Best Student Paper Award in area of Databases and Information Systems Integration for the paper entitled: Formal Concept Analysis applied to Professional Social Networks Analysis, 19th International Conference on Enterprise Information Systems (ICEIS). http://www.iceis.org/PreviousAwards.aspx?y=2018

Abstract: From the recent proliferation of online social networks, a set of specific type of social network is attracting more and more interest from people all around the world. It is professional social networks, where the users’ interest is oriented to business. The behavior analysis of this type of user can generate knowledge about competences that people have been developed in their professional career. In this scenario, and considering the available amount of information in professional social networks, it has been fundamental the adoption of effective computational methods to analyze these networks. The formal concept analysis (FCA) has been a effective technique to social network analysis (SNA), because it allows identify conceptual structures in data sets, through conceptual lattice and implication rules. Particularly, a specific set of implications rules, know as proper implications, can represent the minimum set of conditions to reach a specific goal. In this work, we proposed a FCA-based approach to identify relations among professional competences through proper implications. The experimental results, with professional profiles from LinkedIn and proper implications   extracted from PropIm algorithm, shows the minimum sets of skills that is necessary to reach job positions.

Silva, P., Dias, S., Brandão, W., Song, M. and Zárate, L. Formal Concept Analysis Applied to Professional Social Networks Analysis. In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) – Volume 1, pages 123-134. ISBN: 978-989-758-247-9 Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved.

A methodology for analysis of concept lattice reduction

Abstract

Formal concept analysis (FCA) is a mathematical theory of data analysis with applications in many areas. The problem of obtaining a concept lattice of an appropriate size was identified in several applications as one of the most important problems of FCA. In order to deal with this problem several techniques with different characteristics were proposed for concept lattice reduction. However, there are currently no adequate methods to assess what types of knowledge transformations can result from a reduction. A methodology for analysis of concept lattice reduction is presented here. It is based on the use of sets of proper implications holding in the original and reduced formal contexts or concept lattices. Working with both sets of implications, the methodology is able to show what is preserved, eliminated, inserted or transformed by a reduction technique. Three classes of reduction techniques are analyzed from the standpoint of the methodology in order to highlight techniques of each class have in common with respect to the transformations performed. Such analysis is followed by specific examples in each class.

Keywords

  • Formal concept analysis;
  • Lattice reduction;
  • Proper implications 

Dias, Sérgio M.; Vieira, N. J. A methodology for analysis of concept lattice reduction, Information Sciences, Volume 396, August 2017, Pages 202-217, ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2017.02.037.